here it goes.
class LinearRegression
{
public:
// Constructor using an array of Point2D objects
// This is also the default constructor
LinearRegression(Point2D *p = 0, long size = 0);
// Constructor using arrays of x values and y values
LinearRegression(double *x, double *y, long size = 0);
virtual void addXY(const double& x, const double& y);
void clear() { sumX = sumY = sumXsquared = sumYsquared = sumXY = n = 0; }
void addPoint(const Point2D& p) { addXY(p.getX(), p.getY()); }
// Must have at least 3 points to calculate
// standard error of estimate. Do we have enough data?
int haveData() const { return (n > 2 ? 1 : 0); }
long items() const { return n; }
virtual double getA() const { return a; }
virtual double getB() const { return b; }
double getCoefDeterm() const { return coefD; }
double getCoefCorrel() const { return coefC; }
double getStdErrorEst() const { return stdError; }
virtual double estimateY(double x) const { return (a + b * x); }
protected:
long n; // number of data points input so far
double sumX, sumY; // sums of x and y
double sumXsquared, // sum of x squares
sumYsquared; // sum y squares
double sumXY; // sum of x*y
double a, b; // coefficients of f(x) = a + b*x
double coefD, // coefficient of determination
coefC, // coefficient of correlation
stdError; // standard error of estimate
void Calculate(); // calculate coefficients
};
LinearRegression::LinearRegression(Point2D *p, long size)
{
long i;
a = b = sumX = sumY = sumXsquared = sumYsquared = sumXY = 0.0;
n = 0L;
if (size > 0L) // if size greater than zero there are data arrays
for (n = 0, i = 0L; i < size; i++)
addPoint(p[i]);
}
LinearRegression::LinearRegression(double *x, double *y, long size)
{
long i;
a = b = sumX = sumY = sumXsquared = sumYsquared = sumXY = 0.0;
n = 0L;
if (size > 0L) // if size greater than zero there are data arrays
for (n = 0, i = 0L; i < size; i++)
addXY(x[i], y[i]);
}
void LinearRegression::addXY(const double& x, const double& y)
{
n++;
sumX += x;
sumY += y;
sumXsquared += x * x;
sumYsquared += y * y;
sumXY += x * y;
Calculate();
}
void LinearRegression::Calculate()
{
if (haveData())
{
if (fabs( double(n) * sumXsquared - sumX * sumX) > DBL_EPSILON)
{
b = ( double(n) * sumXY - sumY * sumX) /
( double(n) * sumXsquared - sumX * sumX);
a = (sumY - b * sumX) / double(n);
double sx = b * ( sumXY - sumX * sumY / double(n) );
double sy2 = sumYsquared - sumY * sumY / double(n);
double sy = sy2 - sx;
coefD = sx / sy2;
coefC = sqrt(coefD);
stdError = sqrt(sy / double(n - 2));
}
else
{
a = b = coefD = coefC = stdError = 0.0;
}
}
}
simple examples of how to
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment